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Abstract. It is well known that there is no strict universality of the spectral fluctuations of 
quantum Hamiltonians whose classical counterparts undergo the transition from integrabil- 
ity to complete chaos. I discuss the level spacings distribution P ( S ) ,  and explain why the 
semiclassical formulae of Berry and Robnik cannot be correct for small S. There is no 
global universality of P(S) for nearly integrable systems, but the approach to the integrabil- 
ity as the perturbation parameter E goes to zero can be universal. This is reflected in the 
fact that the slope d P / d S  at S = 0 for small E is universally inversely proportional to E. I 
give two models in terms of two-dimensional random matrices, one of them being based 
on maximum entropy considerations. I also point out the connection to the statistics of 
zeros of random functions. and discuss the numerical evidence. 

The quantum energy levels of a Hamiltonian H fluctuate around the mean spectral 
staircase and such spectral fluctuations obey universal laws for a few universality 
classes of Hamiltonians (see, e.g., Bohigas and Giannoni 1984). In the random matrix 
theories the classification is in terms of the symmetries (Porter 1965), which has been 
recently extended by Robnik and Berry (1986) and further generalised by Robnik 
(1986). Thus for Hamiltonians without spin, one must distinguish between the systems 
with an antiunitary symmetry (which generalises the concept of time reversibility) and 
systems without such a symmetry. The representation matrix of the Hamiltonian is 
real symmetric in the former case, and is complex Hermitian for systems with broken 
antiunitary symmetry. The random matrix theory of spectral fluctuations deals with 
random matrices whose elements are statistically independent and their distribution 
is assumed invariant with respect to the orthogonal or unitary transformations, for the 
first and for the second class respectively. It follows (see, e.g., Porter 1965) from these 
two assumptions that the distribution of the matrix elements must be Gaussian, hence 
the names for the two classes of infinite random matrices: Gaussian orthogonal ensemble 
(GOE) and Gaussian unitary ensemble (CUE). Originally the results of the random 
matrix theories were meant to apply to sufficiently complex systems (many coupled 
degrees of freedom), for which a statistical approach is not only very natural but also 
the only feasible one. However, it has been one of the major advances in the non-linear 
dynamics of quantum systems to demonstrate that Hamiltonian systems with only a 
few freedoms and such that their classical counterparts have chaotic dynamics 
everywhere in phase space (ergodicity) generically display spectral fluctuations which 
are correctly described either by GOE or GUE statistics (Bohigas er a1 1984, Seligman 
et a1 1985, Pechukas 1984, Berry 1985, Yukawa 1985, Berry and Robnik 1986), 
depending on whether the Hamiltonian does or does not have antiunitary symmetry 
(Robnik and Berry 1986, Robnik 1986). 
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These are two of three coherent classes each of which conforms to its own universal 
law of spectral fluctuations. The remaining class consists of those systems with 
integrable classical counterparts, and they have generically Poisson statistics irrespec- 
tive of their symmetries (Berry and Tabor 1977). Recently Casati et al(1985) discovered 
some departures from exact Poisson statistics, but they still report evidence for the 
universality. For the discussion of the statistical significance of these and similar results 
see Feingold (1985) and Casati et a1 (1986). 

One might add to this list a fourth class consisting of nearly integrable systems 
which do have some universal aspects of their spectral fluctuations which we discuss 
in this letter. Although this class consists of truly generic systems in the intermediate 
region of transition from integrability to chaos (Robnik 1984, Meyer et a1 1984, Seligman 
er ai 1984, Yukawa 1985, Ishikawa and Yukawa 1985), it is not coherent enough to 
display a complete universality in the spectral fluctuations. It is very important to 
keep in mind that these are systems whose classical counterparts are not ergodic but 
have mixed dynamics in the classical phase space in the sense of the KAM theorem. 
The transition from an integrable Hamiltonian by perturbing it is generally a smooth 
one (not a ‘phase transition’ of the spectral statistics which occurs for instance when 
an integrable Hamiltonian is made ergodic). This has been demonstrated numerically 
by Robnik (1984) and independently by Meyer et ai (1984), Seligman et a1 (1984), 
Ishikawa and Yukawa (1989,  Terasaka and Matsushita (1984), and by Seligman er a1 
(1985) and Wintgen and Friedrich (1987). 

The semiclassical theory of level spacings of such systems has been given by Berry 
and Robnik (1984), but the predicted P ( S )  cannot be correct for small S, because the 
assumption of statistical independence of level sequences supported by different regular 
and irregular regions in classical phase space is not strictly satisfied. More precisely, 
this approximation becomes particularly poor if the measure of the classically chaotic 
regions is so small that the corresponding irregular levels become widely spaced. This 
is in disagreement with the quantum theory which predicts that irregular levels occur 
in pairs, because it is the interaction between them which makes them irregular (see 
below). 

Other suggestions for the description of P ( S )  are the ensembles of banded matrices 
of Seligman et a1 (1985), the well known Brody distribution (Brody et a1 1981), and 
the theoretical considerations of Yukawa (1985) which extend the results of Pechukas 
(1983). 

It is clear that a universal one-parameter family of distributions P ( S )  for the 
transition region does not exist. One reason is that there is no universality in the large 
scale of nearly integrable systems. For example, the geometry of regular and chaotic 
regions in the classical phase space of a nearly integrable system is certainly not 
universal. The approach to the integrable case for arbitrary generic perturbations can 
be universal, however, and this is the essential point of the present work. 

Let us thus study the statistics of the energy levels of a perturbed Hamiltonian 

H = H,+ EH, ( 1 )  
where Ho is an integrable Hamiltonian with N freedoms, N a 2, H, is the perturbation 
and E is the perturbation parameter. The level spacings distribution P ( S )  is a function 
of E and H, . For E = 0 P ( S )  is the Poisson distribution exp(-S), and P ( 0 )  does not 
vanish. By switching on the perturbation this changes abruptly and we shall find that 

(2) 
where the constant is independent of E.  The linear regime is valid for S s  E. 

P (  S )  = constant x S /  E 



Letter to the Editor L497 

One naive idea of studying P ( S )  for small E might be to resort to the first-order 
quantum perturbation theory (degenerate theory for pairs of degenerate levels of H o ,  
and non-degenerate theory for other levels). All levels are split and shifted linearly 
with E, then nothing happens! Indeed, the first-order perturbation theory is unable to 
describe the interaction between the levels and represents merely simple kinematics 
of spectra such that all spectral statistics are invariant. Therefore the first-order 
perturbation theory would predict Poisson statistics for the KAM systems, which is 
certainly wrong. To reach any conclusions along this line of argument one really has 
to study the motion of levels as described by the complete set of the equations as given 
by Pechukas (1983) and Yukawa (1989, or one has to take into account at least the 
second-order (differential) corrections. In order to explain the behaviour of P ( S )  for 
small S it is sufficient to resort to the perturbational analysis of pairs of levels. 

I now present two random matrix models. The first is as follows. For the perturba- 
tion problem (1) we consider a diagonal matrix with elements EIo and EZo with Poisson 
statistics, which is continuously perturbed to a GOE or GUE matrix by a linear superposi- 
tion. The secular determinant of the total random matrix is thus written as 

The two eigenvalues E2 and E , ,  E2 3 E ,  are 

E 2 . 1 ~  ${Eio+E20+ &(Hi1 + H22) *[(E20+ E i o + E ( H i i  -H22))2+4~21H~~1211’2}. (4) 

We shall assume without loss of generality that the equilibrium point of the levels is 
stationary, i.e. E, + E2 = 0, so that 

E20 = - El0 = Eo/2 HI1 = -H22 ( 5 )  

and the eigenvalues simplify 

E2, ,  = *i[(Eo+ ~EH,,)’  + ~ E ~ I H , ~ ~ ~ ] ~ / ~ .  

The level spacing S depends on H as follows: 

S =  E2- El = [ ( E ~ + ~ E H , , ) ~ + ~ E ~ J H ~ ~ ~ ~ ] ~ / ~ .  ( 7 )  

As already explained we assume the following distributions: 

P(E,) dEo= a-’ exp(-Eola) dEo 

P(H,,) dH, ,  =(a&)-’ exp(-H:,/a2) dH, ,  

(8) 

(9) 

(2/ exp( -IH,~I’/~’) dl ~ , 2 l  GOE 

GUE 2/ U2) exp( -I Hl*12/ a2) I HI21 dl H I 2 1  
P(IH120 dlH121 = { ( 

I 
Now we seek the level spacings distribution 

P ( S )  = S ( S  - [(Eo+2&H,,)2+4E2~H,2~2]’/2) 

x P(E0) dEo P(HI1) dH1, P(lH12l) dlH12I. 

Here S(s) is the Dirac delta function. The normalisation 
r a  
J P ( S ) d S = 1  
0 
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is obviously satisfied. Integration over Eo yields 

x P(H11) dHI1 P(IH121) dlH12l (13) 

where both branches of Eo= -2&H,, f (S2-4~2(H1212)1/2 have been taken into account. 
Next we integrate over HI1 and introduce the new parameter 

A = UE (14) 

which leads to 

e-x2 /4h2  P*(S)  =2 - 
2aJ;; A 

x l*@ - ( ( S / a ) 2 - ~ 2 ) ' / 2 ) T A  [ (:h 
e-22 dz is the error function, and 

P ( S ) = P + ( S ) + P - ( S ) .  (16) 

In case of GOE perturbation the curly bracket in the integrand of (15) must be unity. 
The mean level spacing a of the Poisson distribution (8) will be chosen so that the 
mean level spacing of P ( S )  is unity, i.e. 

lom P ( S ) S  d S  = 1. 

We thus end up with a one-parameter family of distributions, the only parameter being 
A = EO: The final result can be cast in the form 

where 

and a is determined by (17 ) ,  i.e. 

In case of GOE perturbation the curly bracket in the integrand of (20) must be taken 
equal to unity. 
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It is easy to obtain the slope d P / d S  at S = 0. We evaluate (15) in the limit A + 0, 
and S + 0, assuming S << A. Of course, a + 1 as A + 0. Therefore 

as A + O  (for GOE perturbation) (22) 
J;; 

and 

as A + O  (for GUE perturbation). (23) 
1 

We see that the slope dP /dS  at S = 0 scales inversely proportional to the perturbation 
parameter A if the perturbation matrix H,, is real symmetric Gaussian random, e.g. 
corresponding to the case that HI in (1) has time reversal symmetry. If If, is complex 
Hermitian Gaussian random matrix, then the level repulsion is quadratic and the 
second derivative obeys the scaling given in (23). There is of course no guarantee that 
this model for P ( S ,  A ) ,  as given by (18)-(21), is accurate for arbitrarily large S. But 
there is every reason to expect that it is very good at small S. (Bohigas (1987) has an 
alternative two-dimensional model of random matrices.) 

The second random matrix model is as follows. For most systems in the transition 
region there exists a one-parameter family of curves which gives a surprisingly good, 
although not exact, overall fit to the histograms for P (  S ) .  This empirical fact suggests 
that there is a strongly pronounced clustering of the actual P (  S) near a most probable 
curve. Therefore I propose the idea to determine (i)  the most probable level spacings 
distribution P, ( S ,  a) using the maximum entropy considerations under the constraint 
that the second moment is prescribed 

( S 2 )  = lom S 2 P ( S )  d S  = 1 +U’.  (24) 

(The second moment goes monotonically from 2 in the case of a Poisson to 4/57 in 
the case of a Wigner distribution.) (ii) Next we would like to calculate the probability 
distribution for the deviations of the actual P (  S) from the most probable curve P,( S, (T) 
with the same value of a. To do this one must introduce a metric in the space of 
curves P ( S ) ,  e.g. the uniform metric 

d d f ,  8 )  =sup IfW -g(x)l 
X 

for the positive definite functions defined on the semiaxis [0, CO), or the L2 metric 
1/2  

Uf, g )  = ( lom dx(f(x) - 8 ( S V )  * 

Secondly, and more importantly, we must introduce some metric in the space of 
Hamiltonians, which is more difficult to do, as the functions H ( q , p )  defined on the 
2N-dimensional phase space (4, p )  are neither integrable (normalisable) nor bounded. 
But we could proceed by considering first a finite-dimensional approximation to the 
infinitely dimensional space of Hamiltonians, e.g. by considering polynomial Hamil- 
tonians up to a degree M. This is a Euclidean space of as many dimensions as there 
are general non-vanishing coefficients, and the measure is simply the Euclidean (Lebes- 
gue) measure. With these tools we can now define the probabilities for a given 
Hamiltonian to have the level spacings distribution P ( S )  at a distance d,(P, P,) from 
the most probable one, P,,,(S, a), with the same value of U. 
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Here I shall consider only the first problem (i)  by using the two-dimensional random 
matrices. Let us assume that the Hermitian matrix H is such that the equilibrium 
point of the two levels does not move, i.e. Tr H = HI1 + H22 = 0. We shall denote 
x = Hll and y = (H121. P(x, y)  dx dy is the probability that HI1 E [x, x + d x ]  c_ R and 
IHI21 E [y, y +dy]  c [0, a). The requirement of maximum entropy (minimum informa- 
tion) is 

Z = -I-: dx IoE dy P(x, y)  In P(x, y )  = extremum (25) 

with the constraints 

(S’ )  = dx lom dy(x2+y2)P(x, y)  = 1 + U’ 
-m 

and 

(s)=lm dx J m d y  ( x 2 + y z ) 1 ~ 2 P ( x , y ) = i  
-m 0 

and 

Using the method of Lagrange multipliers we have the functional 

a=-  P l n P d x d y + A  I +.[I P(x2+y2)1’2dxdy-1 + v  d x d y P ( x 2 + y 2 ) - 1 - u 2  . (29) 1 [I 1 
The first variation of 

Sa = - 

must vanish 

SP(1n P+ 1) dx dy+A SP dx dy I 
+ p I dx dy SP(x2+ y2)1’2 + Y dx dy SP(x2+y2) = 0. 

5 
I 

We obtain the distribution function P(x, y) ,  

P(x, y)  = exp(A - 1 + p (x2 + y2)1’2 + v(x2 + y2)). 

Recalling that the level spacings distribution is 

P ( S ) = I  S ( S - ( X ~ + ~ ~ ) ’ / ~ ) P ( X , ~ )  dxdy  

we obtain for the real symmetric case 

P,,,(S, U )  = 27rS exp(-1 + A  + pS+ vS2) 

P,,,(s, U )  = 4 d 2  exp(-1 + A  +pS+ vS2) .  

(33) 

(34) 
The parameters A, p, v are determined by the constraints (26)-(28) and are thus 
functions of U. We have obtained the most probable level spacings distribution 

and for the complex Hermitian case 
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P,,,(S, a), which is functionally simply a product of Poisson and Wigner distributions, 
but of course with accommodated coefficients. 

One can expect this distribution to give a good overall fit to the numerical histograms. 
The agreement is expected to be better than in the case of Brody distribution, especially 
as the linear level repulsion is now correctly described. 

It is very difficult to get statistically reliable data for small level spacings for 
Hamiltonian dynamical systems (Robnik 1984, Meyer er al 1984, Seligman et al 1984, 
1985, Terasaka and Matsushita 1984, Ishikawa and Yukawa 1985). Recently Wintgen 
and Friedrich (1987) have given high-quality numerical level spacings histograms for 
the hydrogen atom in strong magnetic field, which is a classically chaotic system above 
a certain critical energy (Robnik 1981, 1982). (Similar but independent results have 
been obtained by Delande (1986).) There seems to be general agreement that the 
observed depression of numerical P ( S )  at small S as compared with the semiclassical 
formulae of Berry and Robnik (1984) is statistically reliable, and the present work 
offers a quantitative theoretical explanation. It is remarkable that the Brody distribu- 
tion, which behaves as a general power law at small S, provides a good overall fit to 
the histograms. But the power law behaviour at small S is tested only qualitatively so 
far in the sense that P ( S )  + 0 as S + 0, and with the improvement of data I expect 
confirmation of the linear level repulsion, with the universal scaling of the slope 
dP/dSls,o- 1 / ~  as E + O  (see equation (22)). 

Another suggestion to obtain more accurate numerical data with great ease concerns 
the statistics of zeros of random functions. After all the energy levels of a matrix H 
are given by the zeros of the determinant 

A(E)=de t (H-EI )  (35) 
which is a function of the real variable E. The idea is to consider a random function 
with Poisson distributed zeros, such as a product of trigonometric functions with 
randomly distributed frequencies and phases, and perturb it. (The perturbation must 
satisfy the condition that levels are neither destroyed nor created in pairs.) A pre- 
liminary numerical study of this model (Robnik 1987) confirms linear level repulsion 
and the scaling property (22) at small S. However, there still remain questions 
concerning the correspondence between the classes of random functions and the classes 
of random matrices. 

I wish to thank 0 Bohigas for stimulating discussions and for warm hospitality during 
my stay at the Institut de Physique NuclCaire, Orsay, where this paper was written. 
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